

Tevatron Electron Lens Activities

A. Valishev, A. Makarevich, A. Romanov, G. Saewert, V. Shiltsev, G. Stancari, X. Zhang FNAL

January 13 2010
Tevatron Accelerator Studies Workshop, FNAL

Outline

- Description of Tevatron electron lenses
- Recent TEL-2 developments
 - Gun modulator
 - Gaussian gun
 - BPM readout
- Head-on beam-beam compensation studies status and plans
- Summary

Tevatron Electron Lenses

e- beam energy	< 10 kV
Peak e- current	< 3 A
Solenoid B-field	30 kG
Gun B-field	3 kG
e- beam radius (SEFT)	2.3 mm
Interaction length	2 m
TEL-1 βx/βy	95/32 m
TEL-2 βx/βy	66/160 m

Stacked Transformer Modulator

- Output voltage up to 6.5 kV
- Ability to act on individual bunches (bunch spacing 395 ns), highly configurable
- Low ripple flattop

Gaussian Gun

- Up to 1A current with the new modulator ($N_e=2x10^{11}$)
- Installed in TEL-2 on June 20 (Tevatron shutdown 6/15 9/11)

BPM Readout

- Old LabView program slow
- New Java program faster (response time ~20 s), uses simpler algorithm
- Shorter e- pulse with new generator – closer calibrations and offsets for electrons and protons/pbars

High Resolution Tevatron BPM

- High-resolution turn-by-turn BPM for observation of tune spectra – the goal is to measure tune spread
- Resolution of 0.5-1 μm
- 31,000 turns memory

Study Plan and Beam Time Requirements

- Calibrate BPMs with electrons and protons
 - 2 hours proton only done!
- Align electron beam with protons
 - 4-6 hours proton-only done (used only 2 hours)!
- Measure tune-spread changes, effect on beam life time
 - 2 hours end-of-store, 4-6 parasitic in-store studies

BPM Calibration

Observable	Measured / Expected Slopes
Δx gun (mm)	1.07 ± 0.01
Δx coll. (mm)	1.03 ± 0.01
Δy gun (mm)	1.028 ± 0.003
Δy coll. (mm)	1.031 ± 0.004
$\Delta x'$ (mrad)	1.10 ± 0.06

TEL-2 BPM calibration with proton beam (closed orbit bump)

Observable	Measured / Expected Slopes
Δx gun (mm)	1.04 ± 0.04
Δx coll. (mm)	1.03 ± 0.01
Δy gun (mm)	0.84 ± 0.01
Δy coll. (mm)	0.86 ± 0.04

TEL-2 BPM calibration with electron beam

Proton and Electron Beam Alignment

$$\sigma_{x,y}^e = (1.67 \text{ mm}) \sqrt{\frac{(2.86 \text{ kG})}{(30.1 \text{ kG})}} = 0.52 \text{ mm}$$

$$\sigma_x^p = 0.60 \text{ mm}$$
 $\sigma_y^p = 0.89 \text{ mm}$ $\sigma_x^{\bar{p}} = 0.44 \text{ mm}$ $\sigma_y^{\bar{p}} = 0.64 \text{ mm}$

$$\sqrt{(\sigma_x^e)^2 + (\sigma_x^p)^2} = 0.79 \text{ mm}$$
 $\sqrt{(\sigma_y^e)^2 + (\sigma_y^p)^2} = 1.03 \text{ mm}$

Summary

- Head-on beam-beam compensation studies with TEL-2 Gaussian beam are in progress
 - First attempt to align proton and electron beams was very successful owing to the much improved modulator and diagnostics
- Further goals are
 - Observe effect of the Gaussian e- beam on proton/pbar tune spread (expect δQ =0.008 at 1A)
 - Demonstrate that HO BBC does not lead to life time degradation
 - Study effects of various imperfections